

Predicting Routes, Sites and Products of Drug Metabolism 12th International ISSX Meeting, July 30th 2019

Matthew Segall – matt@optibrium.com

Overview

- Approaches to predicting metabolism
 - Empirical vs mechanistic
- Predicting P450 metabolism
 - P450 regioselectivity
 - WhichP450
- Beyond P450s
 - Flavin-containing monooxygenases (FMO)
 - UDP glucuronosyltrasfreases (UGT)
- Conclusions

Approaches to Predicting Drug Metabolism

Empirical

Statistical Modelling

Machine Learning

Mechanistic

Molecular Dynamics

Quantum Mechanics

Approaches to Predicting Drug Metabolism

Empirical

Mechanistic

Pros

Can be built on smaller

high-quality data sets

Transferable – based

on physical principles

(Semi) quantitative

Cons

(Very) slow

Requires detailed understanding

Needs lots of data Fast Easy to set up

Pros

Non-transferable

Cons

Qualitative

Predicting P450 Metabolism

Cytochrome P450s

- Ubiquitous superfamily of haem-containing monooxygenase enzymes
- Responsible for ~70-80% of phase I drug metabolism, leading to:
 - Rapid clearance or low bioavailability
 - Potential for drug-drug interaction
 - Impact of P450 polymorphism
 - Bioactivation to form reactive/toxic metabolites
- Primary isoforms responsible for drug metabolism in humans

P450 Catalytic Cycle Predicting sites of metabolism - regioselectivity

Predicting Sites of Metabolism Regioselectivity

Two primary factors determine the sites of metabolism:

- Electronic properties of substrate reactivity
 - H-abstraction aliphatic oxidation, N-dealkylation, O-dealkylation
 - Direct oxidation aromatic oxidation, epoxidation, N-oxidation, S-oxidation
 - Independent of isoform
- Orientation of substrate in active site
 - Electrostatic interactions between protein and substrate
 - Freedom to move
 - Steric accessibility
 - Dependent on isoform and substrate

Quantum Mechanical Models for CYP Reactivity

- The activation energy (ΔH_A) of the rate-limiting step is a key factor determining the rate of reaction at each site
 - Reaction energetics modelled for *H*-abstraction and direct oxidations using density functional theory

Quantum Mechanical Models for CYP Reactivity

- Semi-empirical QM methods (AM1) are used for practical calculations
 - Surrogate radical used instead of haem
 - Brønsted relationships used to estimate activation energies
 - Corrections applied based on *ab initio* QM
- Full substrate included in simulation
 - Not 'pattern matching' sites to precalculated energies
 - Includes subtle longer range effects
 - Important when developing a lead series

Capturing Steric and Orientation Effects

- Corrections to activation energies estimated for each isoform
 - 3A4, 2D6, 2C9, 1A2, 2C8, 2C19, 2E1
- Statistical models using 2D descriptors
 - Distances to charged functionalities, H-bond acceptors/donors, etc.
 - Distances to rings, flexible linkers, 'bulky' groups
- Trained and tested using high-quality regioselectivity data sets

Isoform	Number of molecules
CYP3A4	305
CYP2D6	202
CYP2C9	193
CYP1A2	201
CYP2C19	184
CYP2E1	105
CYP2C8	106

Validation Independent test set of 30% of data

J Tyzack et al. (2017) J. Chem. Inf. Model 56(1) pp. 2180-2193

Example Regioselectivity Prediction Venlafaxine

WhichP450 Objectives

- Many isoforms of P450
 - Different active site constraints
- Predictions of regioselectivity for which isoform(s) are most relevant?
- Identify possibilities of DDIs or polymorphic effects
- Compounds may be metabolised by multiple isoforms

Binding sites: CYP3A4 – purple & CYP2E1 – blue

P Hunt *et al.* (2018) J. Comp.-Aided Mol. Des. **32**(4) pp. 537-546 PDB 4K

P450 Catalytic Cycle Predicting which P450 isoform(s)

Binding sites: CYP3A4 – purple & CYP2E1 – blue

P Hunt *et al.* (2018) J. Comp.-Aided Mol. Des. **32**(4) pp. 537-546

WhichP450 Methods

- Data set
 - 465 unique compounds
 - 633 compound/isoform pairs
- Considers 7 isoforms
 - 3A4, 2D6, 2C9, 1A2, 2C8, 2C19, 2E1
- Random forest model
 - Random forests
 - Whole molecule and 2D descriptors
- Model rank orders isoforms by probability

WhichP450 Methods

- Data set
 - 465 unique compounds
 - 633 compound/isoform pairs
- Considers 7 isoforms
 - 3A4, 2D6, 2C9, 1A2, 2C8, 2C19, 2E1
- Random forest model
 - Random forests
 - Whole molecule and 2D descriptors
- Model rank orders isoforms by probability

WhichP450 Results – Top-k

P Hunt et al. (2018) J. Comp.-Aided Mol. Des. **32**(4) pp. 537-546

Putting it Together

2C19 is also a minor isoform, but not predicted

P Hunt et al. (2018) J. Comp.-Aided Mol. Des. **32**(4) pp. 537-546

Beyond P450s

Flavin-containing Monooxygenase (FMO)

- Phase I enzyme class involved in compound metabolism
 - Found in multiple tissues
- 5 active isoforms (FMO1–5)
 - FMO3 major isoform found in adult liver
- Mechanism involves transfer of Oxygen from FAD–OOH
 - Predominantly N/S-oxidation

Flavin-containing Monooxygenase (FMO)

- Phase I enzyme class involved in compound metabolism
 - Found in multiple tissues
- 5 active isoforms (FMO1–5)
 - FMO3 major isoform found in adult liver
- Mechanism involves transfer of Oxygen from FAD–OOH
 - Predominantly N/S-oxidation

Modelling the Reaction Mechanism

- QM simulations using DFT to determine reaction mechanism
 - Concerted, $S_N 2$
- Calculate activation energy, ΔH_A

Identifying of Sites of FMO Metabolism Activation Energies

Example – Predicting FMO3 Metabolism

- Activation energies calculated with semi-empirical QM model of transition state
- Steric and orientation descriptors included
- Data set
 - 67 molecules
 - 210 potential sites of metabolism
- Gaussian processes machine learning
- Classification of potential sites as metabolised (True) or not (False)
- Results on independent test set
 - Kappa = 0.82
 - Accuracy 92%

UDP-Glucuronosyltransferase (UGT)

- Major contributors to phase II metabolism
 - ~40% of all conjugation reactions
- Conjugation of substrate with glucuronic acid
- Several human isoforms implicated in drug metabolism
 - UGT1A 1A1, 1A4, 1A9
 - UGT2B 2B4, 2B7, 2B15

Transition State

- QM simulations to determine reaction mechanism using DFT
- Complex reaction mechanism
 - Proton transfers with active-site histidine residues
- Calculate activation energy, ΔH_A

Transition State

- QM simulations to determine reaction mechanism
- Complex reaction mechanism
 - Proton transfers with active-site histidine residues
- Calculate activation energy, ΔH_A

Example – Prediction UGT1A1 Metabolism

- Activation energies calculated with semi-empirical QM model of transition state
- Steric and orientation descriptors included
- Data set
 - 79 molecules
 - 242 potential sites of metabolism
- Gaussian processes machine learning
- Classification of potential sites as metabolised (True) or not (False)
- Results on independent test set
 - Kappa = 0.65
 - Accuracy 83%

Conclusions

- Detailed QM simulations enable us to understand the reaction mechanisms for metabolism
- This enables us to predict metabolism with greater accuracy and transferability
 - Reaction energetics are important factor governing metabolism
 - Combined with steric and orientation effects of protein environment
- Combining models of different steps in the catalytic cycle enable us to predict routes, sites and products of metabolism
 - E.g. WhichP450 and regioselectivity
- For more information
 - J. Tyzack *et al.* (2017) J. Chem. Inf. Model **56**(1) pp. 2180-2193
 - P Hunt et al. (2018) J. Comp.-Aided Mol. Des. 32(4) pp. 537-546
 - matt@optibrium.com

Booth 415

Acknowledgements

- P450 Metabolism
 - John Tyzack
 - Rasmus Leth
 - Many former colleagues from Camitro, ArQule, Inpharmatica and BioFocus
 - This research has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement no 602156
- UGT Metabolism
 - Mario Öeren
 - David Ponting
 - Funding from Lhasa Limited
- FMO Metabolism
 - Peter Walton
 - Mario Öeren
- All of the above Peter Hunt

